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Abstract

In this report we explore the problem of obtaining
confidence intervals and tests of hypotheses for the
parameters of a new family of 1life distributions derived
in [1]. Several statistics whose distributions are
Independent of the shape parameter are investigated in
terms of accuracy of confidence bounds for the distribution
scale parameter. Percentage points of the statistic yielding
the most accurate confidence bounds on the scale parameter,
among those investigated, are tabulated for samples of

size n, n=2(1)5.
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0. Introductfon

In {1], Birnbaum and Saunders derlved a new faclly of 1ife
distributions from plausible connlderations of the physfcal behavior
of fatiguc crack growth under repeated Joading. Certaln peint
estimators for the parameters of this fam{lv of distribut fons vere
investigated in (2], In the following, we explore the probles of
obtaining confidence intervals and tests of hypotheses for these
parameters.

We denote by J(u,f) tne two-parancter distribution of a nun-

negative random variable derived in [1] and def{ned by
0.1) N ce/e)) for £ >0
where a > 0, B > 0 and
0.2) ) = /& -4,
/t

and N 1is the distribution function of the standard normal variate.
The parameter a dctermines the shape of the distribution while the
median B 1is a scale parameter. Iterative numerical proccedures for
the computation of the maximum likelihood estimates of o and r are
developed and a simple estimator ¢ of & 1is derived in [2). We show
here that the maximum likelihood estimators, and the estimator : as
welly, even though they have optimal asymptotic properties, are such
that they cannot form the basis for invariant tests and confidcence
mervals for elther of the parameters for all sample sfzes. Several
ttatisties whose distributions are independent of the shape pararcter

a are dovestipgated In terms of their consequent confidence repions



tor the noale patameter ¢, The percentage points of the moat
acveptab le ntatistfen among those fnvestigated are evaluated by
Monte Carlo methods and the results presented.  Further, some

comparisons of pover are also obtained by the same means and the

curves exhib{ted,



-

Maximum Likelihood Estimators
In order to define the maximum likelihood estimators of o and ¢

1.

we first define for a given set of positive random variables Tl,.. ,Tn

the arithmetic and harmonic means, respectively

n n 1 -1
s-% 2 Ty R rlx Tl’
i=] i=]1 "4
and the harmonic mean function
n -1
K(x)-l:l > (x+T,) 1} g
n {=1 i

a

represents a sample of independent random variables
B of B

Then 1if Tl""’Tn

each distributed as F(a,8B),

the maximum likelihood estimator
is the unique positive solution of the random equation g(x) = 0 where

g(x) = xz - x[2R + K(x)] + R[S + K(x)].

The maximum likelihood estimator a of o 1s then given in terms of

é. S, R and

T,\]2 -
~ 11 & 2f4 S, B _ .,k
a=|s 2 =) = Z+g-20%

[“1-1 <>] g R

These results were given in [2].
which is shown in [2] to be

The simplified estimator B of B8,
consistent and for small values of a virtually the same as the maximum

likelihood estimator B 1is given by

é = ER.
3



If the sample size is n = 2, then it also follows from the

results of (2] that the maximum likelihood estimators of a and 8

NN -
o= <'/Tl>r' o= f o= ;"TA}'".}. .

2

satisfy

We note that for n = 2, the maximal {avariant for confidence sets
and tests of hypotheses independent of o is the ratio 5,('1'2/.')/"('|'1/")~
For n =2 there is apparently no functicn of £/8 and & to which
this ratio {s equal., One would infer that functions of a and ¢ (or 1)
cannot be used to obtain confidence sets for f. In fact, we now demon-
strate that for n = 2 one cannot have confidence sets and tests of
hypotheses for either o or g based on functions of o and Al

Let Xi denote a random variable with law 9(«,1). In distribution

we see that

(1.1)

™ [
f
~<
>
"
—
[}
™) o
-

since each Xi is equal in distribution to its own reciprocal. This

property we call the reeiprocal property. Thus (1.1) says that E
has the reciprocal property. We now find the distribution of the product

X1X2, call it G:

G(t) = P[Xlx2 <t] = P[Xl < txz]

- [ o cwonnid ceor.
0

Letting ¢ = £ 1 we see



(1.2) G(t) -f ﬂzlfctcv(ay)]dw(y)-

-~

From (1.1) it follows that

A

(1.3) PIE < y] = PIXX, < ¥ = GOP).

Since in distribution & = |g(./x1x2)| we see

(1.4) Pla < z] = P[-z < f,»’xlxz < z] = Ply(-z) < /xlx2 < u(z)]

el ()] - 6ly?(-2)].

Thus in terms of the distribution of G, which contains a as
a nuisance parameter, we can express via (1.4) and (1.3) the distributions
of & and fB. Note how the parameter o« 1is "scrambled" in the distribution
of &, in fact, it appears to be almost inextricably bound.

Using the fact that

g(t) =2 sinll(Q‘nzt) for t > 0,

an identity given in [3], and some straightforward, but tedious, algebra

one finds

g[sinh Ly sinh—l(gz)]
a 2 2

y sinh ) + /& + y? cosh§).

(1.5) -é [ty (ay))

Thus we conclude that for exact inference the distribution of é, based

on two observations, would be of use only 1f o were known. Since
1 t t
S tltv(a)] 2y sinh ) + |y| cosh(z) = 2(t,y)

say, we have



(1.6) G(t) 1[ N[2(L,y)1dN (y).

Thus finding a ¢t such that the right-hand side of (1.5)

1-¢
equals 1l-¢ would enable one to obtain a conservative lower confidence
bound for B (which is the one of primary interest in life studies)

since by (1.3)
1.7 P{(B/Ve ) < 8] = G(t)_) > l-e.

This bound is of level 1-¢ and invariant with respect to o. Vhether or
not it is of use would depend upon the outcome of numerical tabulation and
the practical situation.

The conjecture that for all samples of size greater than two,
the maximum likelihood estimators of both a and B would contain the
nulsance parameter o would seem to be substantiated. At the same time
a result as explicit as (1.2) and (1.6) appear to be a formidable task

for large sample sizes.




2. Invariant Confidence Intervals and Tests for 8

Suppose we have a sample T,,...,T ot independent J(a,B)

variates. From the equations (0.1) and (0.2) it follows that
1, £
.= ,Gg—) or i=1,...,n

are independent standard normal variates. Maximal invariants for
estimators, tests and confidence bounds for B8, invariant with respect
to a, are functions of ratios of such variates. We can try to
utilize well-known results for the normal distribution to obtain bounds
on B8 functionally independent of a.

First let us consider, for k + m = n, the statistic

k n
1 2\/1 & 2
u == > 20)/= > 2
k,m <k s i>/mk+l 1

which has Snedecor's F-distribution with k and m degrees of freedom
in numerator and denominator, respectively.

From standard tabulations we can find 61, 62 such that
P[6,) < Uy n< 6] =

for any prescribed vy ¢ (0,1).

The question is whether these percentage points of the F-distribution
can be used to obtain confidence bounds on the unknown parameter 8
independent of «. Using the fact that gz(x) = x + % - 2 we study an

observed value e m(B) as a function of B and obtain
9

1 & 2
K 1%1 S/ g 8%/r)) - 28
Yk m(B) = n = ( 2/

P I & 2 s, + (B“/r,) - 28
=3 g/ %2 2

k+1 ;




where s, = 1
lere bl Kk

[ Sx

] k -1 -1
ts N IS ] (= Nt are the arithmetic and
i 1 k (o1 i

~

harmonic means of the first k observations, with 8yy Ty defined

similarly. Consider the quadratic equation representing cither the
8
ot
r

numerator or denominator. One sees that it has roots ry 1 =
i

but from the well-known inequality between r, s we infer that both
roots are complex. Therefore, no real roots or poles exist for the
rational function g(2) for B > 0. Unfortunately, closer examination
shows that the distribution of Uk,m is virtually invariant with
respect to R so that inversion to obtain meaningful confidence bounds

is not possible. To see this note that
e @ = (51750, uy ) = (/)
which both have an expected value near unity., Now
i 2
sgnu, (B) = sgn(ag” + bB + c)
]

11 Lol k| '
where a=~—~—-—, b=~—-—, ¢ =5, -5s,. Thus the function
r r r r 1 2
2 1 1 2
u m(8) has one local maximum and one local minimum but the actual
]
behavior depends upon the values of a, b, ¢. Note that a will always

be near zero so that the quadratic equation is nearly linear. The roots

are
2
b ¢ /b -4ac _ ]b] = ¢ = ac 2
7a v (sgn b £ 1) + TST'+ |b|3 + 0(a”).

S c
Examination shows that one of the roots is near |g] for |al small.
Some actual computer runs on the IBM~360 were made for the case

k =m = 50 and yielded the following values:



sup uk,m(S) inf uk,m(B)
1.1941 .5968
1.8273 .8473
1.3341 .9117

The range of values was very small. This idees was then abandoned.

Consider the t-distribution with n degrees of freedom

g 2 \/Q f
V = .
N i=1 /n o i=1 naz

Again using the definition of the function ¢ we examine an observed
value as a function of £, namely
Zﬁ(ti/ﬁ) = ng

v (@) = -

2 )
/zgz(ti/a) (s + ér— - 28)°%

where s,p,q,r are the means of (tl,...,tn) of order 1, %, -4, -1,
respectively.

One checks that
—
sgn Vr'x(s) = sgn[b(/%- - '—;—I_P-) + /;1—])- - Sv%.]

and thus v
n

changes sign only once. For certain cases vn(S) is monotone
in B but again the total vaiation is very small. Consequently, we
see that invariance with respect to a virtually forces an invariance

with respect to f, at least in the cases examined. We now try to

allow some dependence of our statistic upon a for finite sample sizes



Hence we seek a statistic whose distribution is invariant with
respect to R, depends upon a for finite sample sizes but does not

depend upon o« asymptotically. Let us try

n noo,
2 (T /)Y g /e)?
1=1 {=1

where B# = /SR 1is the mean mean, i.e. the geometric mean of the
harmonic and arithmetic means Our rationale for this choice is

that

@)? =

= 1]

n 2 Py
Y £2@,/8)
i=1

is the maximum likelihood estimator of az if é is the maximum likeli-

hood estimator of A. For smull o we know by previous work that the mean

mean 1s the same as the maximum likelitood estimator but much easier to

compute. This we put in the denominator and obtain

3|

n
@=L S 2y - b
i=1

Since

-3

2
n 2
S 1 i o 1
Ec=-%E ) —-<1+-—>+0(—)
R n2 1,9=1 TJ 2 n

we see that as n + = with probability one

2
E03) » 61+ %) = o2t 20?

Thus the proposed statistic cannot be invariant with respect to a even

asymptotically. Consequently, we propose a modified statistic which has

10



a distribution independent of B and asymptotically independent of a,

namely

n
S &(T,/8)
g /Al *

n 2n \/E;:_——_
i_ -1
n

The coefficient has been chosen to make S/R - 1 an unbiased estimator

of az. Consider an observed value as a function of £

/e e

yn(8)=cn*&s—-‘g‘
2-1
r

It is clear that as a function of R it is not only monotone
decreasing but has a range of « to ==, Thus it could be inverted
to obtain confidence intervals for R 1f percentage points were tabulated.
Unfortunately, simulation by Monte Carlo procedure of the distribution of
Yn revealed that although the statistic is indeed asymptotically inde-
pendent of q, the independence is not exhibited for samples of size 50
or smaller.

Z
2
We now consider the ratio, letting k+m=n, of W = 7 where

1 & 0Ty 1 & Ty 1
Zl & —= 2: 5(7;), 22 = = 2 &(?r), and W has the distribution
/m 1=k+1 /e {=1

of the ratio of two independent standard normal variates. This distribution

is the Cauchy distribution F given by

F(x) = % + % arc tan x -~m < X < o,
Alternatively, letting Fi denote Snedecor's F-distribution with one
]

degree of freedom in numerator and denominator, we have

11




Pl-u « W < u]

1}
la~)
—
-—
-
r
l A
c
—
L}
o]
-
~
c
~

F(u) = ¥F'-u) = 2F(u) - 1.

the last equality follows since =W has the same distribution as W.
Thus tables of the Fl 1 distribution cculd be used as percentage

’
points.

Consider an observed value of W as a function of

W(f,) .

CMZE: - Vkp )/(Bvéir- vmp,)
9 2 q1 1

We notice that

e

l

S

1
sgn W(B) = Vmk sgn(/gg -‘/gi).
1 2

Thus the function is either everywhere increasing or everywhere decreasing,

w(0) =V

I
-

o
[

and

and we can distinguish exactly two cases:

Case I. P19y ~ Pydy

2

wip) :

|

i

|

/&3 |
V ﬁﬁz —————————————— pim i S

V/kpl t
u"pz \ : {
— s o /

VA9 VP
|
Figure 1.

12



Case 11, P14, G P,9,

wifi)

“q |
Vol —= .
r";il I I
! .
N
v P2%
Figure 2.

Suppose it is known that for some ¢ we havr P[L < W < u] » 1l=¢;
then {7 » 0t - w(2) < u} 1s a 1-¢ level confidence region. By
inspection we see¢ that any set of the form {3 > 0:8 < w(B) < u} could
consist of two critical regions, an upper critical region or a lower
critical region only, or the empty set which would occur at random

depending upon the values of P19y Pyd, in relation to &, u.

This {s an unsatisfactory state of affairs since we should like
not only to be able to determine one-sided confidence intervals but tu be
able to place half of the confidence that B8 1lies in the upper critical
region and half that {t lies in the lower. Moreover, as a matter of
nractical convenience, we should prefer that one calculation suffice to
determine both upper and lower confidence intervals. To this end, we
propose to find a method of separating these regions. One realizes

that this is equivalent to ordering the observations.
13



3. Tests and Confidence Sets for £ Based on Crdered Observations

We observe that Ti n/'3 < 1 implies

and T.‘n/s > 1 implies hi,n > 0. We observe also that g(Ti’n/B)

is an order-preserving transformation. We note that for a sample of
2

size 2 ¢ < = { = 4 > =

size 2, Proh[hz'n 0] Prob[kl’n > 0] (1/2) Hence Prob[B T2,n]

Proh[g < T = (1/2)2. We can therefore determine iteratively, by Monte

l,n]
Carlo procedures, a value u(e) such that the joint event X, 2/X1 g > uE)
] ’
and X2 5 < 0 occurs with probability €. Then, an upper confidence bound
on 3 at level 1-¢ is given by max[T2 2,g], where g 1is equal to
&

[u(E)Tl,Z-TZ,Z]/[u(e)/Tl,Z-I/TZ,Zl' Because of the symmetry of the normal
distribution, a lower confidence bound on B at level 1-¢ is given by

] ' = = =
min[Tl’ZOg [U(C).TI,Z’TZ,ZJ] wj'th 8 [u(e)'rz’z Tl'zl/[u(e)/Tz’z 1/T1’2]'
Clearly, because Prob[X1 oD 0] = (1/2)“, procedures based on the

]
assumption X >0 or X < 0 will encounter difficulties if n is
l,n n,n

large, unless 1-t is extremely close to 1. One might also consider a
test based on the joint event )(2.2/}(1’2 > u(e) and xl'2 > 0 or the
joint event x1,2/x2,2 > uE), x2,2 < 0.

For samples of size n one can, therefore, determine 2(e) such that

the probability that the event

n n
nS() = > X, <0 and W (B) = i S, S (Y
51 a0 } /o1 )4=2 1 Lin

occurs is €. Then an upper confidence bound on B at level 1l-¢ is given

by

14



$ s l
nn s max 1}'1 Ti’n/jzl (I/Tj’n) ’ h[l(C)’Tl.nn°"an’n] ’ (3-1)

n
where hlL(e),T; ,...\T, ) = /AT l(c)Tl;.n -S 1y

i,n
n i=2 ’
[/n-1 2(:)/'1"1’ e 2 (1/T1 n)l’]. From ~onsiderations of symmetry,
] 1-2 1]

one obtains a lower confidence bound on B at level 1l-¢ as

n l’ n
w = min| Y 1) /Y Q/t

& el j,n)’ h'“(e)’Tl,n"“’Tn o 0320

— el
I'Rli'°'rn.n] = o=l e ()T, - {=1 Tynl/
Ll b
[/n-1 I!.(o:)/'l‘“’n - ng (1/'1'J ,n) 15

A test of the hypothesis H,: B 180 versus H,: B < Bo based

where h'[2(c),T

on Wl(so) rejects l-l1 at significance level ¢ 1if

n n

a test of H,: 8 < Bo versus H,: B > B, based on W :

1 n-1
W (8, = E(T,/B,)/E(T _/8,)
n"0 v’tT-Tigl i'"0 n'0

rejects H, at significance level ¢ if

2

wn(BO) > L(e) and nS(BO) > 0.

A two-sided test at significance level 2e¢ rejects

15



H,: By LB < B, versus H : 8 < 81 or B > 82 if

8.) > 0 and Wn(.’iz) > L(e) or nS(Sl) < 0 and Wl(ﬁl) > 2(e).

In like manner one can obtain two-sided confidence bounds at

confidence level 1-2¢ as
w <B<n.
n n

Ordinarily, however, since B 1is the median of the distribution, one
would want only a lower bound on B8 or would want to test only Hl
versus HZ'

Clearly, there are many other invariant functions of the ordered
xi's that one might consider. It is felt, however, that for very small
sample sizes and relatively small values of ¢, it is appropriate to
base tests and confidence sets on wl and wn, with constraints either
on nS or on xl,n and xn,n'

In the following section a Monte Carlo investigation is made of the

power of three tests based on wl and wn.

16



4. Study of Power of Three Proposed Invariant Tests Concerning B8

The Monte Carlo study described below was designed to determine
which of three proposed procedures would provide most powerful tests,
based on very small complete samples, concerning the parameter £.
All three procedures depend upon W, and W but these statistics
are combined differently in each case with constraints on X R\

n
or nS = 121 xi,n'

Two of the tests are generalizations of the first two tests in
Section 3 applying to a sample of size 2. The third is the test
described in Section 3 based on wn or Wl and constraints on nS.

The first Monte Carlo simulation procedure described below is
designed to determine critical values for testing either H,;: 8 > 8,
versus HZ: B < Bo» H, versus H, or Hy: B) < B < B, versus
H4: B < Bl or B > 62 at significance level ¢. In the study we
considered samples of size n, n=2,3,4 and 5 and values of ¢
equal to .005, .01, .025, .05, .10. The number N of Monte Carlo
samples generated was 10,000.

For each n, N samples xl""'xn of independent stundard normal

variates were generated using the method of Marsaglia and Bray [4]). For

each of the N samples, the values

nS = X_ +eee+ X , X and X
n n

1 1,n ,nN

were determined. These values were then used to calculate

ns=X, . nS-X

W, = —_— and W= Ll
/n-1 X, " Al x
,N n,n
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The N values of Xn , W

and W allowed us to determine
A i n

estimates of

Dl(z) - P[Xn <0, W, > z)

N 1

Dz(z) - P[xn'n <0, Wn > z)

D3(z) = P[nS < 0, W, > 2]

1

so as to produce a table of ck(e) such that Dk[ck(e)] = ¢. The entries
of the tables were obtained by letting Xl(j),...,xn(j) be the jth of the
N samples of size n and calculating, e.g. with k = 1,

-~ 1 N

D, (z) = 'N'ng (X, @) <0, W) > 2},
Here {A] 1s the indicator of the event A, equal to one if true
and zero otherwise. The values ﬁk(zj)' j=1,...,N were computed
from independent samples which form a sequence of independent observa-
tions of a decreasing functior. Maximum likelihood ¢stimates of Dk
vere therefore determined by using the method of Brunk [5] for monotone
functions applied to the values of Bk(zj), j=1,...,N. (This technique
is also used, e.g., in the construction of maximum likelihood estimators
of increasing failure rates, see [6].)

Now, consider the following events:

Ay o < 0¥ > gle By =Xy > 00 Wy >yl

Ay = Xy o <00 W2 0o], By = [X) >0, W > 5],

2 n,n

A3 = [nS < O, w1 > c3], 83 = [nS > 0, Wh > c3].
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We know from the symmetry of the normal distribution that
P(&) = P(B) = D, (z) =€, k=1,2,3.

Hence, the procedure described above allows one to determine the power
of two-sided tests and both one-sided tests on 8.

Critical values for testing the various hypotheses of interest were
generated under the assumption ao = 81 = ﬁz = 8. The following procedure
is designed to determine the pecwer of the tests for Bp = £, = &2 = 52r.

First n was fixed and N samples Xl,...,Xn of standard normal

variates were generated. The following were then calculated for each ¢

and each j, j=1,...,N

l,n’ ’

where the primed values denote the fact that T1/8 was replaced by
TI/(628). Since Xi = g(Til(dzs)), one can determine X; as ¢ function

of X1 by first solving for Tile as a function of xi and then

substituting this function in the expression for X!, i=1,...,n.

Rationaling the denominator, we obtain
= (x 12)(8 + 1/8) + (8 - 1/8)/1 + x2 /4 PR T
Then,
1) = () + (B}, k1,2,3,

were evaluated (where the prime indicates that primed values of X

i=1,...,n are used). Finally, the power tunctions
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ul (k) =
B (8) = § ILTV(6), k=1,2,3

were computed as functions of 4. The values of § considered were
8= 3/S, 1/8, 3/3 212, X, 2, 3, &, %

Monte Carlo simulations of the power curves for two-sided tests
at € = .01 for k=1,2,3 and all valucs of n=2,3,4,5 are presented
in Figures 3, 4 and 5. It can be observed that the tests corresponding
to k = 3 are more powerful than those corresponding to k = 1 for

both n=4 and n = 5 when testing H, versus "2’ H2 versus H

1 1

or H, versus "6' It 18 also apparent that for fixed § the power

3
tends to increase with n and that the Incremental power increase from
k=1 to k=3 18 larger for n = 5 than for n = 4,

On the other hand, the wuim wd power curves corresponding to
k=2, at ¢ = .91 for va values of n, show a markedly different
behavior. One can observe for two-sided tests that power first Increases
as § deviates from unity in either direction and then decreases as ¢
approaches either zero or infinity, The tests are therefore not unbiascd
and censequently not acceptable. Hence no tabulations of the L2(L) are
presented. Tabulations of zl(c). cs(c) for ¢ = ,005, .01, .025, .05, .10
for n = 2(1)5 are given in Table I with the exception that entries are

not possible for cl(c) whenever ¢ < 2", Here ck(c) is such that

Dk(Ck(C)) = ¢ for fixed n and k = 1,3,
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Table 1

Critical values of ;k(c) computed for N = 10,000

n =2 € -005 .01 .025 .05 .10
Cl(ri .97 -.94 .84 .74 .51
c3(r) .97 .94 .85 .74 .51

n=3 € .005 .01 .025 .05 .10
Cl(c) 1.12 1.03 .86 .68 .33
63(5) 1.13  1.04 .85 .67 44

n =4 € .005 .01 J025 - .05 .10

gl(e) 1.16 1.01 .78 .47 X

C3(c) 1.15 1.02 .81 .65 .43

n=>5 € .005 .01 .025 .05 .10

gl(s) 1.11 .93 .56 X x

Z(e) | 1.11 1.00 .81 .64 .41
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An illustration of the use of Table 1 is now given. Let

tl,...,ts be the ordered failure times of a device in life testing.

Under the assumption that the unordered re times would be a

random sample from the two-parameter distribution defined by

Equation (0.1), a 100(1- )% lower confidence bound on £ 1is given

by Equation (3.1), namely

- /— \4. !i -l
S I T 263(€) tn ~ 1 ty
min | N ¢/ N
i:l i 1:1 i ! lé \4 1.
- = . ._» - r -.2
2(,3(¢)Ln 5 ty
L. -
Suppose the 1life times, in hours, were
t1 = 48,310
t2 = 55,154 t3 = 61,273
t:4 = 58,110 tS = 67,769

£ =.1. We compute a lower confidence bound for £ at

and we set

level .90 to be equal to 45,375.
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Figure 3. Graphs of power as a function of 6.
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Figure 4. Graphs of power as a function of §.
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Figure 5. Graphs of power as a function of
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